
Don’t Discount the
Session ID:
11249

Don t Discount the
Developer

Prepared by:Tales from the Technical Dark Side
Joe Tseng/Tammy Vandermey
O2Works LLC

Remember to complete your evaluation for this session within the app!

Monday, April 8, 2019

O2Works LLC

y

Agendag

• Introductions
• Dark Side Technical Practices and Procedures
• Dark Side Coding Patterns
• Stepping Into the Light – Going Forward Recommendations

Introductions

• Tammy Vandermey
Technical EBS Consultant

• Joe Tseng
Technical EBS Consultant – Technical EBS Consultant,

O2Works, LLC
– Over 25 years technical

implementation experience

– Technical EBS Consultant,
O2Works, LLC

– Over 25 years technical
implementation experience

in Oracle EBS
– Contact Information:

tammy@o2works.com

in Oracle EBS
– Contact Information:

jtseng@o2works.com

About O2Works
O2Works is one of the leading E-Business Suite services providers offering the
most experienced teams of functional and technical consultants in the industry. Our
hands-on resources average 20+ years of experience focused exclusively on
implementing, upgrading, integrating, and extending Oracle's E-Business Suite.
Stop by and talk to us about our large portfolio of successful projects.

Presentations, White Papers, and other information shared
Stop by and visit us at Booth 601 in the Exhibition Hall

on‐line at: https://o2works.com/knowledge-works/

4

Dark Side Practices
and Procedures

The Technical Dark Side
Practices and Procedures

• Based on experience, there are many technical practices that can lead a project or an
IT group to the technical dark side. The ones we have seen often include the following:
– Believe that any technical resource will do
– Underestimate the Importance of Source Code Control
– Overlook the Importance of Deployment Tools or Standards

F il t I t Pl– Failure to Instance Plan
– Documenting for the Sake of Documenting

Dark Side Practices and Procedures
“Any Resource Will Do”y

• The proper selection of technical resources is an often overlooked aspect to any IT
project. Failure to utilize competent resources can be catastrophic to project success.

• Technical resource selection is sometimes characterized by following beliefs:
• Cheaper is better.
• Off-shore means a 24 hour project cycle and better productivity
• It’s the engagement partners responsibility• It s the engagement partners responsibility
• Resumes are all that’s needed, forget the interview
• Module experience trumps long-term industry experience

Dark Side Practices and Procedures
“Any Resource Will Do”y

• Buyer beware, these things actually do happen:
– Engagement companies don’t actually have known technical resources, but will find them

l ff th “ t t” h j t ianonymously off the “street” when projects arise.
– Engagement companies send more experienced technical resources to interviews and swap

them out later – after the opening stages of projects. These resources are sometimes
replaced by resources with minimal work experienceep aced by esou ces a o e pe e ce

– Phone interviews are conducted by experienced professionals but different resources show
up on site

– Multiple resources are assigned to the same project tasks in order to “train” more resources.
– Junior resources “work” during the day at client sites but turn over actual coding to more

experienced off-shore resources in the off-hours.
– Junior resources use client sites as opportunities to experiment and learn.

Dark Side Practices and Procedures
“Any Resource Will Do”y

• The end result of poor technical resource choices
– Last-minute, frantic go-lives that often fail to meet dates or deadlines
– Project cost explosion
– Costly Engagement partner replacement
– Performance problems

P d h i diffi l d l i i– Poor code that is difficult and costly to maintain
– Un-orthodox coding methods that violate standards and thus may invalidate Oracle support

agreements
– Costly rewrites– Costly rewrites

Dark Side Practices and Procedures
“Underestimate the Importance of Tools – Source Code Control”p

• Every environment needs an active and usable source code control repository tool.
– Creating date named folders in Microsoft Windows Explorer is NOT a tool
– Using your Production environment for source code is NOT a tool

• Not having and using a source code control tool is an invitation to disaster
– Lost, working versions of code can set a project timeline back as functionality is rebuilt
– Accidental overwrites or loss of code

Dark Side Practices and Procedures
“Underestimate the Importance of Tools – Source Code Control”p

Dark Side Practices and Procedures
“Underestimate the Importance of Tools – Source Code Control”p

• There are plenty of tool options available for purchase.
• If you choose not to purchase a tool, there are plenty of free source code control

repository tools available
– SVN
– PVCS
– Git
– Tortoise SVN (SVN w/ a Windows Shell)
– Tortoise Git (Windows Shell for Git)

• Source Code Control is critical to maintaining a version history of all source code
objects and being able to diagnose code control issues.

Dark Side Practices and Procedures
“Underestimate the Importance of Tools – Source Code Control”p

• At many sites that have made the well intentioned investment into a source code control
tool, the improper use of the tool is a point of failure
– Code Dumping grounds – Failure to properly categorize code can lead to a massive object

dumping ground – or even duplicate code within the tool repository
– Incomplete code control – Critical objects may be missing from code control.

Lack of integration with deployment methodology or tool– Lack of integration with deployment methodology or tool

Dark Side Practices and Procedures
“Overlook Deployment”p y

• An inadequate view of the importance of code deployment is another contributor to the
technical dark side

A solution must not be viewed as “working” unless it is proven that it can be properly and– A solution must not be viewed as working unless it is proven that it can be properly and
consistently deployed to Production.

– Proper testing includes deployment that follows an identical path to production
– Deployments that have gone wrong can be costly

• Deployment Tools in an EBS environment can be expensive
– May need custom tailoring to your environment
– Have much thought and practical experience built into them

Th lt ti t d l t t l b t d d d d i t• The alternative to a deployment tool may be standard procedures and scripts
– Require training specific to your environment
– Often involve scripts that need to be suited to the specific solution
– Can be error proneCan be error prone

Dark Side Practices and Procedures
“Overlook Deployment”p y

• At a minimum, a good Deployment Tool or Methodology will include the following:
– Ability to integrate with source code control. Deployments must be able to pull specific

i f dversions of code
– Ability to deploy to any EBS environment
– Ability to deploy all types of EBS objects

• Database objects (tables views PLSQL packages etc)• Database objects (tables, views, PLSQL packages, etc)
• Oracle Forms and Reports
• BI Publisher templates and Data Templates
• OAF pages
• Configurations

Dark Side Practices and Procedures
“Failure to Instance Plan”

• Instance Planning is another overlooked aspect of the EBS technical picture
– Having everyone “swim” in a 3 year old testing instance is not a plan
– Stale instances lead to stale results
– Instance refreshes must be integrated into a project plan.
– Optimal environments have an instance cloned weekly, if not daily.

I i h d l d d ili il bl l i l ll– Investments in hardware, personnel, and procedures to utilize available cloning tools are well
worth it.

Dark Side Practices and Procedures
“Documenting for the Sake of Documenting”g g

• Too often, IT environments often lack a well thought out plan for
storing and cataloging documentation.
– Documentation dumping grounds are the “norm”. Approaches are often

scattered and very often lack a means of finding proper documentation,
thus further perpetuating the problem. These dumping grounds can be
found in

• Windows folders
• SharePoint sites
• Source Code Control

Addi i ll h i d d l l l i h– Additionally, the requirement to use outdated templates also results in the
creation of documentation that do not adequately describe the solution
being implemented.

– Without a plan, the reality is that though a time consuming part of theWithout a plan, the reality is that though a time consuming part of the
project, created documentation is practically useless.

Dark Side Coding g
Practices

Dark Side Coding Practices

• Over the years, we’ve seen a number of coding practices that are less than optimal.
Though invisible to most, poorly code written code is costly for a number of reasons
– Code Maintenance - The inability to read code can be expensive as time is spent weeding

through unnecessarily complex or bloated code
– Code “inertia” – Functionality that is initially written with poor code must be replicated if a

rewrite is necessaryrewrite is necessary
– Performance problems – Poor coding approaches and spaghetti logic often leads to poor

performance
– Violation of Oracle standards – Code that bypasses API’s violates Oracle support agreements
– Organizations can be held “hostage” by poor code
– Rewrites of major functionality as code is finally deemed to be too unstable

Dark Side Coding Patternsg
1. The Clown Car
2. The Superman
3. The Tree Killer
4. The 7-11 – The Database is not your convenient store
5. The Ted Kennedyy
6. The Matryoshka Doll
7. The Move Along Nothing To See Here
8. The NULLIFIER8. The NULLIFIER
9. The Straight Jacket
10. The Hard Hat

Dark Side Coding Patterns
#1 – “The Clown Car”

• Failing to modularize your code,
putting everything in a single code

itunit.

• Consequences:
– No code re-usability - Single use

code
– Poor Code maintainability

Dark Side Coding Patterns
#2 – “The Superman”

• Instead of working out access issues properly, set context to be whatever works.

• Consequences:
– Unintended operations are made with unintended code authorizations.

Dark Side Coding Patterns
#3 – “The Tree Killer”

• Instead of using records, declare variables for
EVERYTHING.

• Consequences:
– Unnecessary Code Bloating
– Poor Code Maintainability

Dark Side Coding Patterns
#3 – “The Tree Killer”

Dark Side Coding Patterns
#4 – “The 7-11”

• Using the database as a convenient store – visiting
it as often as possible.

• Consequences
– Poor program performance
– Redundant logic
– Poor Code maintainability

Dark Side Coding Patterns
#4 – “The 7-11”

Dark Side Coding Patterns
#5 – “The Ted Kennedy”

• Left justify your code so its impossible to read

• Consequences:
– Poor Code maintainability

Dark Side Coding Patterns
#5 – “The Ted Kennedy”

Dark Side Coding Patterns
#6 – “The Matryoshka Doll”

• Instead of modularizing, nest your IF conditions and blocks to
a ridiculous depth.

• Consequences:
– Poor Code Maintainability
– Redundant Logic
– Loss of modularity and re-use

Dark Side Coding Patterns
#6 – “The Matryoshka Doll”

Dark Side Coding Patterns
#7 – “The Move-Along-Nothing-To-See-Here”

• Hide Exceptions so no one knows or log them
to a place no one will ever look. This is

th i k th i f “WHENotherwise known as the infamous “WHEN
OTHERS THEN NULL”

C• Consequences
– Lost errors that can have unknown multiple

downstream ramifications

Dark Side Coding Patterns
#8 – “The NULLIFIER”

• Instead of understanding and using variable scope within block structures, set all your
variables to NULL “JUST IN CASE”

• Consequences:
– Poor Code Maintainability
– Possibility of unintended consequences when failing to reset variables

Dark Side Coding Patterns
#8 – “The NULLIFIER”

Dark Side Coding Patterns
#9 – “The Straight Jacket”

• Limit your code to just 80 characters and wrap as needed

• Consequences:
– Poor Code Maintainability and Readability

Top Ten Coding Pattern Killers
#9 – “The Straight Jacket”

Top Ten Coding Pattern Killers
#10 – “The Hard Hat”

• Instead of parameterizing, hard code literal values whenever you can

• Consequences:
– Poor Code Maintainability
– Loss of code re-use

Top Ten Coding Pattern Killers
#10 – “The Hard Hat”

Stepping into the
LightLight
Going forward
Recommendations

Stepping Into the Light
Going forward RecommendationsGoing forward Recommendations
• Interview your technical resources before bringing them onboard

– Request code samples to review coding techniques. Coding styles obviously vary between
developers, but good coding practices will always include the following:developers, but good coding practices will always include the following:

• Well structured, intentional and consistent indentation scheme
• Modularization and parameterization for reusability and maintainability
• Limited code unit size
• Generous use of free space to improve readabilityGenerous use of free space to improve readability
• Use of block structures to properly assign variable scope and life
• Code that is self-documenting

– Use of sensible variable names
– Use of Anchored Data types as a means of documenting code intent
– Use of table and cursor record types
– Avoidance of redundant comments

– Have resources write actual code in person as part of the vetting process
– Use interview question that are scenario based that will identify actual problem solving skills

Stepping Into the Light
Going forward RecommendationsGoing forward Recommendations
• If using an engagement partner, ask questions about who they have assigned to your

project
– How long have they been with the company
– Ask for references

• Understand that despite the marketing material, off-shore technical work is not
il hnecessarily cheaper

• Choose experience over “exposure” to a specific needed module
• Use experienced resources for more complex tasks

Stepping Into the Light
Going forward RecommendationsGoing forward Recommendations
• Implement a Source Code Control tool NOW if you have not yet done so

– Make an investment into studying how best to structure the repository to suit your needs
– Integrate your source code control tool with your deployment tool or methodology

• Do not overlook the importance of a clean solution deployment
• Review instance planning within your organization or project
• Re-think the why and how of technical documentation
• Perform code reviews as necessary to avoid bad coding patterns

Q & AQ & A
J T j @ 2 kJoe Tseng – jtseng@o2works.com

Tammy Vandermey – tammy@o2works.com

Session ID:

11249

Remember to complete your evaluation for this session within the app!

