é?‘ COLLABORATE 19
B

TECHNOLOGY ANMD APPLICATIONS FORUM
FOR THE ORACLE COMMUNITY

Don’t Discount the
Developer Session ID:

11249

Tales from the Technical Dark Side _
Prepared by:

Joe Tseng/Tammy Vandermey
O2Works LLC

Remember to complete your evaluation for this session within the app!
Monday, April 8, 2019

#C19TX




Agenda

* |ntroductions
 Dark Side Technical Practices and Procedures
» Dark Side Coding Patterns

« Stepping Into the Light — Going Forward Recommendations

A COLLABORATE

=




Introductions

» Joe Tseng

— Technical EBS Consultant,
O2Works, LLC

— Over 25 years technical
Implementation experience
in Oracle EBS

— Contact Information:
itseng@o2works.com

e Tammy Vandermey

— Technical EBS Consultant,

O2Works, LLC

— Over 25 years technical
implementation experience

in Oracle EBS

— Contact Information:
tammy@o2works.com

{ ] COLLABORATE
¥ie HNULLE /¥ AN SALICABUING FUIAIR

-



About O2Works

O2Works is one of the leading E-Business Suite services providers offering the
most experienced teams of functional and technical consultants in the industry. Our
hands-on resources average 20+ years of experience focused exclusively on

implementing, upgrading, integrating, and extending Oracle's E-Business Suite.
Stop by and talk to us about our large portfolio of successful projects.

« Gold
ORACLE Partner

L,,'C)Qy;\f{rc.>rks STAR

Fracle To Work LEVEL THREE

Stop by and visit us at Booth 601 in the Exhibition Hall

Presentations, White Papers, and other information shared
on-line at: nhttps://o2works.com/knowledge-works/

AN cauLasoiE

=



"A COLLABORATE10
.‘ .

TECHNOLOGY AND APPLICATIONS FORUM
’ FOR THE ORACLE COMMUNITY

Dark Side Practices
and Procedures




The Technical Dark Side
Practices and Procedures

« Based on experience, there are many technical practices that can lead a project or an
IT group to the technical dark side. The ones we have seen often include the following:

— Believe that any technical resource will do

— Underestimate the Importance of Source Code Control

— Overlook the Importance of Deployment Tools or Standards
— Failure to Instance Plan

— Documenting for the Sake of Documenting

A COLLABORATE



Dark Side Practices and Procedures
“Any Resource Will Do”

» The proper selection of technical resources is an often overlooked aspect to any IT
project. Failure to utilize competent resources can be catastrophic to project success.

« Technical resource selection is sometimes characterized by following beliefs:
» Cheaper is better.
» Off-shore means a 24 hour project cycle and better productivity
 It's the engagement partners responsibility
* Resumes are all that's needed, forget the interview
* Module experience trumps long-term industry experience

A COLLABORATE




Dark Side Practices and Procedures
“*Any Resource Will Do”

Buyer beware, these things actually do happen:

Engagement companies don’t actually have known technical resources, but will find them
anonymously off the “street” when projects arise.

Engagement companies send more experienced technical resources to interviews and swap
them out later — after the opening stages of projects. These resources are sometimes
replaced by resources with minimal work experience

Phone interviews are conducted by experienced professionals but different resources show
up on site

Multiple resources are assigned to the same project tasks in order to “train” more resources.

Junior resources “work” during the day at client sites but turn over actual coding to more
experienced off-shore resources in the off-hours.

Junior resources use client sites as opportunities to experiment and learn.

r { A COLLABORATE




Dark Side Practices and Procedures
“Any Resource Will Do”

» The end result of poor technical resource choices
— Last-minute, frantic go-lives that often fail to meet dates or deadlines
— Project cost explosion
— Costly Engagement partner replacement
— Performance problems
— Poor code that is difficult and costly to maintain

— Un-orthodox coding methods that violate standards and thus may invalidate Oracle support
agreements

— Costly rewrites

r £
/D COLLABORATE



Dark Side Practices and Procedures
“Underestimate the Importance of Tools — Source Code Control”

* Every environment needs an active and usable source code control repository tool.
— Creating date named folders in Microsoft Windows Explorer is NOT a tool
— Using your Production environment for source code is NOT a tool

* Not having and using a source code control tool is an invitation to disaster
— Lost, working versions of code can set a project timeline back as functionality is rebuilt
— Accidental overwrites or loss of code

r £
/D COLLABORATE



Dark Side Practices and Procedures
“Underestimate the Importance of Tools — Source Code Control”

Tue 2/19/2079 11:35 AM ‘»
RE: OAF code

To @Tseng, Joe

Retention Policy UL Retention Tag - 3 yr Delete (3 years) Expires 2/18/2022

@ vou replied to this message on 2/13/2019 12:51 PM. ~

Hiloe,

Check “billing” folder under “51AvA_TOP fmlloracle/apps/ar/” in Production.

For more details refer _whl’ch was used for Production migration.

This migration was done by DBAs.

Regards,
——

From: Tseng, Joe

Sent: Tuesday, February 19, 2019 10:30 PM

To:

Subject: OAF code

Hi ——

Can you tell me where the OAF code is for the ‘form? We need to make some additions to it.

Thanks,

Joe A




Dark Side Practices and Procedures
“Underestimate the Importance of Tools — Source Code Control”

» There are plenty of tool options available for purchase.
» If you choose not to purchase a tool, there are plenty of free source code control
repository tools available
— SVN
— PVCS
- Git
— Tortoise SVN (SVN w/ a Windows Shell)
— Tortoise Git (Windows Shell for Git)

« Source Code Control is critical to maintaining a version history of all source code
objects and being able to diagnose code control issues.

A\ COLLABORATE



Dark Side Practices and Procedures
“Underestimate the Importance of Tools — Source Code Control”

« At many sites that have made the well intentioned investment into a source code control
tool, the improper use of the tool is a point of failure

— Code Dumping grounds — Failure to properly categorize code can lead to a massive object
dumping ground — or even duplicate code within the tool repository

— Incomplete code control — Critical objects may be missing from code control.
— Lack of integration with deployment methodology or tool

A\ COLLABORATE



Dark Side Practices and Procedures
“Overlook Deployment”

* An inadequate view of the importance of code deployment is another contributor to the
technical dark side

— A solution must not be viewed as “working” unless it is proven that it can be properly and
consistently deployed to Production.

— Proper testing includes deployment that follows an identical path to production
— Deployments that have gone wrong can be costly
« Deployment Tools in an EBS environment can be expensive
— May need custom tailoring to your environment
— Have much thought and practical experience built into them
« The alternative to a deployment tool may be standard procedures and scripts
— Require training specific to your environment
— Often involve scripts that need to be suited to the specific solution
— Can be error prone

r { A COLLABORATE
¥ie HNULLE /¥ AN SALICABUING FUIAIR

-



Dark Side Practices and Procedures
“Overlook Deployment”

« At a minimum, a good Deployment Tool or Methodology will include the following:

— Ability to integrate with source code control. Deployments must be able to pull specific
versions of code

— Ability to deploy to any EBS environment

— Ability to deploy all types of EBS objects
» Database objects (tables, views, PLSQL packages, etc)
Oracle Forms and Reports
Bl Publisher templates and Data Templates
OAF pages
Configurations

A\ COLLABORATE




Dark Side Practices and Procedures
“Failure to Instance Plan”

« Instance Planning is another overlooked aspect of the EBS technical picture
— Having everyone “swim” in a 3 year old testing instance is not a plan
— Stale instances lead to stale results
— Instance refreshes must be integrated into a project plan.
— Optimal environments have an instance cloned weekly, if not daily.

— Investments in hardware, personnel, and procedures to utilize available cloning tools are well
worth it.

A\ COLLABORATE




Dark Side Practices and Procedures
“Documenting for the Sake of Documenting”

« Too often, IT environments often lack a well thought out plan for
storing and cataloging documentation.
— Documentation dumping grounds are the “norm”. Approaches are often
scattered and very often lack a means of finding proper documentation,

thus further perpetuating the problem. These dumping grounds can be
found in

* Windows folders
« SharePoint sites
» Source Code Control
— Additionally, the requirement to use outdated templates also results in the

creation of documentation that do not adequately describe the solution
being implemented.

— Without a plan, the reality is that though a time consuming part of the
project, created documentation is practically useless.

A COLLABORATE

=



"A COLLABORATE10
.‘ .

TECHNOLOGY AND APPLICATIONS FORUM
’ FOR THE ORACLE COMMUNITY

Dark Side Coding
Practices




Dark Side Coding Practices

* OQver the years, we've seen a number of coding practices that are less than optimal.
Though invisible to most, poorly code written code is costly for a number of reasons

Code Maintenance - The inability to read code can be expensive as time is spent weeding
through unnecessarily complex or bloated code

Code “inertia” — Functionality that is initially written with poor code must be replicated if a
rewrite is hecessary

Performance problems — Poor coding approaches and spaghetti logic often leads to poor
performance

Violation of Oracle standards — Code that bypasses API’s violates Oracle support agreements
Organizations can be held “hostage” by poor code
Rewrites of major functionality as code is finally deemed to be too unstable

. A COLLABORATE

e



Dark Side Coding Patterns

The Clown Car

The Superman

The Tree Killer

The 7-11 — The Database is not your convenient store
The Ted Kennedy

The Matryoshka Doll

The Move Along Nothing To See Here

The NULLIFIER

The Straight Jacket

10. The Hard Hat

© 0 NOoO Ok wWDdDE

COLLABORATE




Dark Side Coding Patterns
#1 —“The Clown Car”

» Failing to modularize your code,
putting everything in a single code
unit.

 Consequences:

— No code re-usability - Single use
code

— Poor Code maintainability

AN cauLasopE

=



Dark Side Coding Patterns
#2 —“The Superman”

» Instead of working out access issues properly, set context to be whatever works.

 Consequences:
— Unintended operations are made with unintended code authorizations.

AN cauLasopE

=




Dark Side Coding Patterns
#3 —“The Tree Killer”

» Instead of using records, declare variables for
EVERYTHING.

e Consequences:
— Unnecessary Code Bloating
— Poor Code Maintainability

'\ COLLABORATE

=



Dark Side Coding Patterns

#3 —“The Tree Killer”

1 return_status

1 msg count

1 msg data

1 cust_trx id

1 cust_cm id

1 trx number

1 customer id

1 _invoice number

1 invoiceid

1 billing type

1 inv_amt

1_rec amt

1_cm amt

1 _ref rec_amt

1 ref cm amt

1 applied cm amt

1 applied rec_amt

1 gty

cnt

1_count
1_cash_receipt_id
1_invoice_count
1_cm count

1 _msg_data_out
1_party_name
1_customer_trx_id
1_trx header_id
1_invoice_error
1_receipt_method_id
1_amount_applied
1_currency
1_exchange_rate_type
1_exchange_rate_date
1 bill to_site_use_id
1 ship to _site_use_id
1 description

1 _pmt method
1_pank_account_id
1_bank_cnt
1_party_id

1 trx type_id
1_total_count
1_lins_count

1 tot_line count

1 count bad cust

1 total srrcount

1 total refund usd
1 usta remit

1 remit message

1 source

1 _trx date

1_bank account_type
1_amt_applied total
1_div_id
1_privatelabelgroup
1_invoice_date

1 Aau= lare

VARCHAR2

(2000) ;

(20);

(60) ;
(60) ;
(258) 1= NULL;

(240) ;
(1080) ;

(240) ;

(20} ;
(20} ;
(20);

(240) ;
(20);

(60) ;
(1000} ;
(20);

(20 :

(150) ;
(80) ;

' COLLABORATE19

BB IRIN M

EUHMULLY S50 B
POk THE SR o8|



Dark Side Coding Patterns
#4 —“The 7-11

« Using the database as a convenient store — visiting
it as often as possible.

e Consequences
— Poor program performance
— Redundant logic
— Poor Code maintainability

F%"A COLLABORATE

=



Dark Side Coding Patterns
#4 —“The 7-11"

CREATE OR REFLACE FCORCE VIEW "APES","ARBEL FEEDER;@" ("INI
SELECT xxul bnp bpa utils pkg.init (rcta.cu omer trx id) in
xxul bnp bpa utils_pkg.get_interco_date (rcta. custameritrxim
interco_date,
xxul _bnp bpa utils_pkg.get_bill to_country (rcta.customer trx id)
billto_country,
xxul_bnp bpa utils_pkg.get_ship to_country (customer_trx id)
ship to_ country,
xxul bnp bpa utils pkg.get_ca_gst_tax (customer trx id)
canada_gst_tax,
xxul_bnp bpa_ utils_pkg.get_ca_dst_tax (customer trx id)
canada_gst_tax,
xxul _bnp bpa utils_pkg.get_kill to_state (customer_trx_ id)
111l to_ stats,
xxul bnp bpa utils_ pkg.get_ship to_state (customer trx id)
ship_to_state,
xxul_bnp bpa utils_pkg.get_bill to_province (customer_trx_id)
bill_to_province,
xxul bnp bpa atils pkg.get_ ship to province (customer trx id)
ship_ to_ province,
xxul _bnp bpa utils_pkg.turkey_currency_switch |
rcta.customer trx id)
Tur_currency, -
xxul bnp bpa utils_pkg.get_turkish conversion rate |
customer_trx id)
Tur_conv,
xxul_bnp_bpa_utils_pkg.get_fus_total_amt_due (rcta.customer_ trx_id)
fus_total amt_ due,
xxul bnp bpa utils pkg.get_applicant acct_num |
rcta.customer trx id)
applicant_acct_num,
xxul_bnp bpa_utils_pkg.get_applicant_addr (rcta.customer_trx id)
applicant_addr,
xxul bnp bpa atils pkg.xxul bnp get ca gst_reg num |
rcta.customer trx id)
gSt_reg_num,
xxul_bnp bpa utils_pkg.xxul_bnp get_ca_gst_reg_num |
rcta.customer_trx_id)
gst_reg_num,
xxul bnp bpa utils pkg.get_canada_ gst_tax types |
rcta.customer trx id)
canada_gst_tax_tvpe,
xxul _bnp bpa utils_pkg.get_ canada_gst_tax type |
rcta.customer_trx_id)
canada gst_tax type,
xxul bnp bpa utils_ pkg.get_canada_gst_tax rate |
rcta.customer trx id)
canada_gst_tax_rate,
xxul _bnp bpa_ utils_pkg.get canada_gst_tax rate |
rcta.customer_trx id)
canada_gst_tax_rate,

RY"™, "SHIF_ T

=xul_bnp bpa_utils_pkg.get_canada_gst_tax amount | £
rcta.customer_trx_id) ' COLLAB ORATE L
canada_gst_tax_amount, ——— e i

xxul bnp bpa utils pkg.get canada_ gst_tax amount | . e

FaR THE
rta Fustamer try i)




Dark Side Coding Patterns
#5 - “The Ted Kennedy”

« Left justify your code so its impossible to read

 Consequences:
— Poor Code maintainability

'\ COLLABORATE

“ e phopeph s



Dark Side Coding Patterns
#5 —“The Ted Kennedy” [mrmewews

THEN

BEGIN

SELECT instance id

INTO 1n_instance id

FRCM (SELECT cii.instance_id
FROM csi_item instances cii,
mtl_system items_b msib
WHERE 1 = 1

AND cii.active end date IS NULL
RND msib.organization _id =

1

AND UPPER (msib.inventory_item status_code) =

AND cii.system id IN (

SELECT system id

FROM csi_systems_b

WHERE parent_system id IN (
SELECT system id

FROM (SELECT cii.instance_id,
cii.system id,

c3t.NAME

system number

FROM apps.csi_item instances cii,
apps.hz_cust_accounts hzc,
apps.csi_systems tl cst

WHERE cii.owner_party_account_id =
hzc.cust_account_id

MND hzc.account_number =
lv_account num

AND hzc.status =

X

AND cii.install location_id =
1v_install site

ZND cst.system id =
cii.system id

AND cst.LANGUAGE =

USEREHV

(*lang")

AND cii.active_end date I3 NULL
ZND instance_type_code =

(SELECT lookup code

FRCM apps.csi_lookups 1

WHERE 1.lockup_type(+) =
'CSI_INST_TYPE CODE’

AND UPFER
(1.meaning

) =

UFPER

('"MANUFACTURER'

IBRRD

MND cii.inventory_item id =

msib,inventory item id

AND msib.segmentl = g

NVL (lv_item number, msib.segmentl) ' COLLAB ORATE 1

mak THE




Dark Side Coding Patterns
#6 — “The Matryoshka Doll”

» Instead of modularizing, nest your IF conditions and blocks to
a ridiculous depth.

e Consequences:
— Poor Code Maintainability
— Redundant Logic
— Loss of modularity and re-use

AN cauLasopE

=



Dark Side Coding Patterns
#6 — “The Matryoshka Doll”

IF cuv_applicant_create.U5_ETHNIC ORIGIN = 'Hispanic or Latino' THEN x_pei informationl :='Y';
ELSE
IF cuv_applicant_create.U5S_ETHNIC ORIGIN = 'Rmerican Indian or Alaska Native (Not Hispanic or Latino)' THEN x pei information2 :="Y";
ELSE
IF cuv_applicant_create.US_ETHNIC ORIGIN = 'Asian (Not Hispanic or Latino)' THEN x pei informatiomn3 :='¥Y" H
ELSE
IF cuv_applicant_create.US5 ETHNIC ORIGIN = 'Black or Rfrican Rmerican (Not Hispanic or Latino)' THEN x pei_ information4 :="¥Y";
ELSE
IF cuv_applicant create.US ETHNIC ORIGIN = "Native Hawaiian/Other Pacific Islander (Not Hispanic/Latino)' THEN x _pei informations :='Y"
ELSE
IF cuv_applicant create.US ETHNIC ORIGIN = 'White (Mot Hispanic or Latino)' THEN x pei informationé :='Y" H
ELSE
IF cuv_applicant create.US_ETHNIC ORIGIN = 'Two or More Races (Mot Hispanic or Latino)' THEN x pei information7 :='Y';
ELSE
IF cuv_applicant create.US _ETHNIC ORIGIN = 'Cpt Cut' THEN x_pei informationg := 'Opt Cut';
END IF:
END IF;
END IF;
END IF;
END IF:
END IF:
END IF;
END IF;




Dark Side Coding Patterns
#7 —“The Move-Along-Nothing-To-See-Here”

Hide Exceptions so no one knows or log them
to a place no one will ever look. This is
otherwise known as the infamous “WHEN
OTHERS THEN NULL”

Consequences

— Lost errors that can have unknown multiple
downstream ramifications

COLLABORATE



Dark Side Coding Patterns
#8 —“The NULLIFIER”

» Instead of understanding and using variable scope within block structures, set all your
variables to NULL “JUST IN CASE”

e Consequences:
— Poor Code Maintainability
— Possibility of unintended consequences when failing to reset variables

A\ COLLABORATE




Dark Side Coding Patterns

#8 —“The NULLIFIER”

1v_salesper
In gl_id rev
1n location

1n gl default seg

lv_segment := NULL;
1v_table nams := NULL:

1n_seg_num := NULL;
1v_segmentl :=
lv_segment2
lv_segment3
lv_segment4
lv_segments :
1v_segmentd :=
1v_trnsegment
lv_trnsegment2
lv_trnsegment3
1v_trnsegment4
lv_segment5
1v_segmenté
1lv_segment7? := NULL;
lv_trnsegments
lv_trnsegmentd

——-sales

1v_salesegmentl := NULL:
1v_salesegmentz := NULL;
lv_salesegment3 := NULL;
1v_salesegmentd := NULL;
1v_salesegmentf := NULL;
1v_salesegment$ := NULL:

——-service

1v_sersegmentcl
lv_sersegmentz2
lv_sersegment3
lv_sersegmentd
1v_sersegment§
1v_sersegment?
1v_default := NULL;
1v_tkl_segl
lv_tbl seg2
1v_tbl seg3
1v_thbl_segd
1v_tkl_segd
1v_tkl_seg®
1n org id := NULL:
Version 1.1 Starts
1n contract_number =

NULL;

1n line number := NULL;

"!

- ELHNULLE T 83U AL
R THE SRASLE cor

\ COLLABORATE 19

ANLINE HLAI M




Dark Side Coding Patterns
#9 — “The Straight Jacket”

e Limit your code to just 80 characters and wrap as needed

 Consequences:
— Poor Code Maintainability and Readability

'\ COLLABORATE

=



Top Ten Coding Pattern Killers
#9 — “The Straight Jacket”

IF in_psn IS NULL

THEN
0_error_msg
'PSN is required field for Service Contracts/IB details service';

o_error_code 2z

ELSE
FOR srv_hdr_dtls rec IN srv_hdr_dtls_cur
LOGE

out_sc_contract_hdr thl.EXTEND;
out_sc_contract hrd rec.service contract number
srv_hdr dtls_rec.contract_number;
out_sc_contract_hrd rec.contract header id := srv_hdr dtls rec.I
out_sc_contract_hrd rec.contract number modifier :=
srv_hdr_dtls_rec.contract_number modifier:
out_sc_contract_hrd rec.description :=
srv_hdr_dtls_rec.short_description;
out_sc_contract hrd rec.contract start_date =
srv_hdr dtls rec.contract_start date;
out_sc_contract_hrd rec.contract_end date
srv_hdr_dtls_rec.contract_end date;
out_sc_contract_hrd rec.total_amount :=
srv_hdr_dtls rec.total_amount;
out_sc_contract hrd rec.negotiation status
srv_hdr dtls_rec.negotiation status;
out_sc_contract_hrd rec.contract_group := sSrv_hdr_dtls_rec.NRME;
out_sc_contract_hrd rec.status srv_hdr_dtls_rec.sts_code;
out_sc_contract_hrd rec.cust_po_number
Srv_hdr_dtls rec.cust_po_number;
out_sc_contract_hrd rec.payment term :=
srv_hdr dtls rec.payment_term;
out_sc_contract_hrd rec.price_list : srv_hdr_dtls_rec.price_list;
out_sc_contract_hrd rec.customer_party id :
srv_hdr_dtls_rec.party_id;
Out_sc_contract hrd rec.customer party number
srv_hdr dtls rec.party number;
Out_sc_contract hrd rec.party site number
srv_hdr dtls_rec.party site number;
out_sc_contract_hrd rec.customer_name :=
srv_hdr_dtls_rec.party_name;
out_sc_contract_hrd_rec.cust_account_number :
srv_hdr_dtls_rec.account_number;
out_sc_contract hrd rec.cust_account_id
srv_hdr_dtls_rec.cust_account_id;

t details

get_bill to_details
{srv_hdr_dtls_rec.bill_to_site_use_id,
out_sc_contract_hrd rec.kill to cust_party number,
out_sc_contract_hrd rec.bill to cust_party name,
out_sc_contract_hrd_rec.bill to_party_acc_number,
out_sc_contract_hrd_rec.bill _to_party_site_number,
out_sc_contract_hrd rec.kill to party location,
out_sc_contract_hrd rec.bill to_cust_address_linel,
out sc contract hrd rec.bill to cust address line2, 2
out_sc_contract_hrd_rec.bill_to_cust_address_line3, \J COLLABORATE"

out_sc_contract_hrd rec.kill to cust_address_lined, l EUHNULLR P AMLU AL IIUINS UM

At s~ ~emtract hrd res hill ta Fust citw FaRk THE & S




Top Ten Coding Pattern Killers
#10 — “The Hard Hat”

» Instead of parameterizing, hard code literal values whenever you can

 Consequences:
— Poor Code Maintainability
— Loss of code re-use

'\ COLLABORATE

=



Top Ten Coding Pattern Killers
#10 — “The Hard Hat” S ST

description
INTO g_ys_service_items|'ULMERK').item number,
g _y¥s_service items('ULMARHE').item description
FRCM mtl system items b
WHERE organization id = 133
BND segmentl = '"30201237';

—— Initialize Item Details for ALSP

SELECT segmentl,
description

INTO g_ys_service items|('ALSPF').item number,

g_ys_service items|('ALSP').item description

FROM mtl_system items b

WHERE organization_id = 133

BND segmentl = "30201236';

—— Initialize Item Details for ALSP Cover L
SELECT segmentl,
description
INTO g_ys_service_items('ALSPCOV') .item number,
g_ys_service_items('ALSPCOV').item description
FROM mtl system items b
WHERE organization id = 133
AND segmentl = '30034437';

—— Initialize Item Details for Inspection Service
SELECT segmentl,
description
INTO g_ys_service items('SRV').item number,
g_ys_service items('5RV').item description
FROM mtl_system items b
WHERE organization id = 133
BND segmentl = "30014613';

—- Initialize Item Details for Production Volume|
SELECT segmentl,
description
INTO g_ys_service_items('FV').item number,
g_ys_service_items|('FV').item description
FRCM mtl system items b
WHERE organization id = 133
BND segmentl = '30027940°';

—— Initialize Item Details for
SELECT segmentl,

description
INTO g ys5 service items('AF').item number,
g:ys:se:cvice:items ['"RE") .item:description " COLLABORATE ‘| G
FROM mtl system items b

AU HR M

- ELHNULLAT a8 A
WHERE organization id = 133 Fak THE SRasL ear

BND segmentl = '30027937';




"A COLLABORATE10
.‘ .

TECHNOLOGY AND APPLICATIONS FORUM
’ FOR THE ORACLE COMMUNITY

Stepping into the
Light

Going forward
Recommendations




Stepping Into the Light
Going forward Recommendations

* Interview your technical resources before bringing them onboard

— Request code samples to review coding techniques. Coding styles obviously vary between
developers, but good coding practices will always include the following:

Well structured, intentional and consistent indentation scheme
Modularization and parameterization for reusability and maintainability
Limited code unit size

Generous use of free space to improve readability

Use of block structures to properly assign variable scope and life

Code that is self-documenting
— Use of sensible variable names
— Use of Anchored Data types as a means of documenting code intent
— Use of table and cursor record types
— Avoidance of redundant comments

— Have resources write actual code in person as part of the vetting process
— Use interview question that are scenario based that will identify actual problem solving skills

A\ COLLABORATE

e



Stepping Into the Light
Going forward Recommendations

« If using an engagement partner, ask questions about who they have assigned to your
project
— How long have they been with the company
— Ask for references
* Understand that despite the marketing material, off-shore technical work is not
necessarily cheaper
» Choose experience over “exposure” to a specific needed module

« Use experienced resources for more complex tasks

A COLLABORATE



Stepping Into the Light
Going forward Recommendations

Implement a Source Code Control tool NOW if you have not yet done so
— Make an investment into studying how best to structure the repository to suit your needs
— Integrate your source code control tool with your deployment tool or methodology

Do not overlook the importance of a clean solution deployment
Review instance planning within your organization or project
Re-think the why and how of technical documentation

Perform code reviews as necessary to avoid bad coding patterns

A COLLABORATE

-



AN\ COLLABORATE
LN

TECHNOLGGY AND APBLICATIONS FORUM
FOR THE ORACLE COMMUNITY

Q&A

Joe Tseng — Jtseng@o2works.com
Tammy Vandermey — tammy@o02works.com

Session ID:

11249

Remember to complete your evaluation for this session within the app!

#C19TX




