

Session ID:

Prepared by:

Remember to complete your evaluation for this session within the app!

11607
BI Publisher Unleashed

Practical and Innovative

Techniques for the Everyday

Monday, April 20, 2020

Joe Tseng

O2Works, LLC

Agenda

• Introduction

• Technique #1 – Process Wrapping

• Technique #2 – Notifications and Flat File Generation

• Technique #3 – Dynamic Boiler-plating

• Technique #4 – OAF Extension Reporting

• Technique #5 – Bursting to XML

Introductions

• Joe Tseng

– Technical EBS Consultant, O2Works, LLC

– Over 25 years technical implementation experience in Oracle EBS

– Contact Information: jtseng@o2works.com

• O2Works is one of the leading E-Business Suite services providers offering the most

experienced teams of functional and technical consultants in the industry. Our hands-on

resources average 19+ years of experience focused exclusively on implementing, upgrading,

integrating, and extending Oracle's E-Business Suite.

About O2Works

Technique #1 –

Process Wrapping

Technique #1 – Process Wrapping

• One of the most common misunderstandings of BI Publisher is that it is just a

reporting tool. BI Publisher can be used for so much more.

• BI Publisher can be used to “wrap” entire processes, encapsulating functionality in

one tidy “package” of code.

– Use of before and after report triggers tied to PLSQL packages can handle almost all

processing requirements

– Process Exception reporting can be easily supported through use of a simple data

templates and formatting templates

– Notifications can all be handled by BI Publisher bursting

Technique #1 – Process Wrapping

• Using BI Publisher to “wrap”

processes can lead to a

smaller code maintenance

“signature”

– No longer a need for

separate concurrent

processes and executables

– Concurrent processes are

instead setup as programs

that use the XDODTEXE

executable

Technique #1 – Process Wrapping

• Data Conversion Processes

– A before report trigger can be used to call PLSQL that loads data via Oracle API

– Autonomous writes to staging or logging tables and be populated and used for reporting

conversion results back to the user

– Multi-threaded processing can be easily supported by using the before report function

as a control procedure

Technique #1 – Process Wrapping

start Pre-Report Trigger

PLSQL Package

Oracle Tables

Data Template

SQL

Generated XML

Data

1

2

3

4 5

Load Via AP

BI Publisher

Bursting Control

RTF Format
Excel Conversion

Report

Data File(s)

External Table(s)

Staging

Tables(s)

Custom

Logging Table

• Data Conversion

Technique #1 – Process Wrapping

• Transaction Load processes

– Before report trigger can be used to call PLSQL that loads external data into Oracle

interface tables or into Oracle via APIs.

– Autonomous writes to staging or logging tables and be populated and used for reporting

conversion results back to the user

– Post-process response files can easily be accommodated through BI Publisher bursting

– Exception notifications can also be accommodated through BI Publisher bursting

Technique #1 – Process Wrapping

• Transaction

Processing

Example start Pre-Report Trigger

PLSQL Package

Custom

Staging Tables

Data Template

SQL

Generated XML

Data

1

2

3

5 6

RTF Format Excel Report

Oracle OM/PA

Tables
GL Interface GL Import Oracle GL

4

Technique #1 – Process Wrapping

• DON’T

– Always create new concurrent program executables for everything

– Re-invent the wheel and write your own notification engine for exceptions

• DO

– Use BI Publisher to “wrap” your processes

– Use BI Publisher to generate well formed error reports instead of relying on concurrent

manager log files

– Use BI Publisher to expand exception notification processing in critical processes

Technique #2 –

Notifications and

Flat File Generation

Technique #2 – Notifications and Flat File Generation

• A common requirement found almost everywhere is the need to send email

notifications or generate flat files. Too often, developers actually code the

functionality for these requirements into PLSQL code, rather than using the

inherent capabilities of BI Publisher

– Developers will use UTL_FILE or FND_FILE to generate flat files specific to the

business purpose.

– To send email, developers will use UTL_SMTP to send out emails

• Coding these functions into database code can lead to excessive and unnecessary

code maintenance issues.

Technique #2 – Notifications and Flat File Generation

• Flat File Example –

Typical Code

Technique #2 – Notifications and Flat File Generation

• Email Example – Typical

Code

Technique #2 – Notifications and Flat File Generation

• Use BI Publisher to simplify flat file generation and eliminate the need for

unmanageable code

– Put your SQL in a simple Data Template

– Create an eText RTF formatting template

– Burst the output to a designated location using a bursting control file

Technique #2 – Notifications and Flat File Generation

• Flat File Generation – Data

Template

Technique #2 – Notifications and Flat File Generation

• Flat File Generation – eText

Format

Technique #2 – Notifications and Flat File Generation

• Flat File

Generation
start Pre-Report Trigger

PLSQL Package
Custom PO

Feed Tables

Purchasing

Data Template

SQL

Generated XML

Data

1

2

3

4 5

BI Publisher

Bursting Control

eText Format Outbound flatfile

Technique #2 – Notifications and Flat File Generation

• Flat File Generation – Bursting Control File

Technique #2 – Notifications and Flat File Generation

start Pre-Report Trigger

PLSQL Package

HR Tables

Data Template

SQL

Generated XML

Data

1

2

3 4

Load Via AP

RTF Format
Excel User

Creation Report

Oracle/AD

Interface table

FND Tables
(Users and

Responsibilities)

Email NotificationBI Publisher

Bursting control

• Transaction

Processing and

Notification

Technique #2 – Notifications and Flat File Generation

• Email Notification
Generation –
Bursting Control
File

Technique #2 – Notifications and Flat File Generation

• DON’T

– Propagate unmanageable code by always using UTL_FILE or FND_FILE to generate

flat files

– Write unnecessary code using UTL_SMTP (or other means) to send out emails

• DO

– Simplify your code with a BI Publisher Data Template and eText formats to generate

Flat Files

– Use BI Publisher Bursting to send email

Technique #3 –

Dynamic Boiler-

plating

Technique #3 – Dynamic Boiler-Plating

• Typical usage of BI Publisher formatting templates uses different templates for

languages and territories

• Multiple templates, however, can lead to a maintenance headache

Technique #3 – Dynamic Boiler-Plating
• Multiple formatting templates supporting multiple languages

Technique #3 – Dynamic Boiler-Plating

• An alternate approach to having multiple templates is to use a single template

– Assemble all data elements and boiler-plate elements into a staging table.

– Have boiler-plate fields be programmatically determined

• Boiler-plate fields can be set based upon different criteria – such as language or operating

unit

– Expand the data template to query both boiler-plate fields and data elements

– Place place-holder fields for boiler-plate fields into the template

Technique #3 – Dynamic Boiler-Plating

• Programmatic build of boiler-plate text

Technique #3 – Dynamic Boiler-Plating
• The BI Publisher formatting template:

Only data elements
are in the template
(and logos)

Technique #3 – Dynamic Boiler-Plating

• Depending upon the requirements, build a custom front-end so a smart user or

analyst can dynamically specify boiler-plate text

– A simple front-end can be built using Oracle Forms or APEX

– The front-end can support rules for which boiler-plate to show based upon different

criteria – such as language or operating unit (or both)

Technique #3 – Dynamic Boiler-Plating
• In this example, invoice “boilerplate” text for different languages, operating units, and bill to

countries is maintained in a basic custom table with a supporting custom Oracle Form:

Operating Unit, French language
Specific text for a Bill to in France

Technique #3 – Dynamic Boiler-Plating
• Dynamic outputs, one template

Technique #3 – Dynamic Boiler-Plating

• DON’T

– Always propagate a maintenance nightmare by using different templates for different

languages or purposes

• DO

– Use dynamic boiler-plating to ease your maintenance issues

– Create a SINGLE template that can support different languages (or other critieria),

rather than creating a template for every language

– Create a front-end from which a smart user can maintain document contents.

Technique #4 – OAF

Extension

Reporting

Technique #4 – OAF Extension Reporting

• Typically, BI Publisher reports and processes are setup as concurrent programs

within Oracle EBS. An relatively unknown extension option, however is to create

an OAF page that enables a BI Publisher Report to be executed directly from an

EBS form or page.

– Create an OAF page that uses a custom controller to launch a BI Publisher report

– Create a function for the custom OAF page

– Enable personalizations on the EBS OAF page or form to call the OAF page.

Technique #4 – OAF Extension Reporting

• Using JDeveloper, a custom OAF page and Controller can instantiate the objects
necessary to call a BI Publisher report

Technique #4 – OAF Extension Reporting

• Controller Code

Technique #4 – OAF Extension Reporting

start

XMLP Data

Template

Custom

Invoice Tables

XML

Stream

Receivables

Service

Contracts/

Install Base

Custom Text/

Lookup Data

Order

Management

Invoice View

Controller

Invoice View Page

Function Call

Document Helper

Export

XMLP Invoice

Template
Invoice PDF

Invoice Preview Technical

Flow

OAF

Personalization

link

start

iReceivables (OAF)

Oracle Forms

Forms

Personalization

Menu Option

Technique #4 – OAF Extension Reporting
• Example: Invoice Preview via an OAF Extension page

Technique #4 – OAF Extension Reporting
• Example: Invoice Preview via an OAF Extension page

Technique #4 – OAF Extension Reporting
• Example: Invoice Preview via an OAF Extension page

Technique #4 – OAF Extension Reporting

• DON’T

– Be limited to thinking that submitting a concurrent process through the standard

submission screen is your only option

• DO

– Build an OAF extension page to help a user maintain “focus” on the transaction or

document at hand

Technique #5 –

Bursting to XML

Technique #5 – Bursting to XML

• One of the most surprising limitations of BI Publisher is the seemingly limited ability

to use bursting to generate XML files.

– Cannot burst through XSL to generate XML files

– Can use an eText RTF to “construct” and XML file

• An alternative approach is to use the native XML functions inside the Oracle

database to build XML and burst the XML to an eText RTF.

Technique #5 – Bursting to XML

• At our client, the Italian government required the generation of eInvoice files.

These were XML data files.

– Oracle provided a localization “patch” that generated these files

– Functionality was very limited, and the files still needed to be processed through a 3rd

party vendor. Customizations to the localization provided were still required.

– The main limitation in the provided patch was that it could only generate one “eInvoice”

file at a time.

• The initial solution built was severely limited by the one-at-a-time limitation. In

order to generate each eInvoice file, a concurrent process was required for each

file. Generating 5000 invoices required 5000 concurrent processes

Technique #5 – Bursting to XML

BI Publisher

XML Data

Template
XSL Transform

Shell Script copy

single invoice

Single eInvoice

(XML)
start

More Invoices? endNoYes

eInvoices (XML)

Oracle

Receivables

Previous Solution

(no base 64 encoding)

Technique #5 – Bursting to XML

• After implementation, a new requirement was added. The PDF of each invoice
was required to be added to the generated XML “eInvoice” so that the customer
could print the invoice.

• We re-architected the solution to add the PDF invoice as a base 64 encoded string
in the XML and, more importantly, moved the generation of the XML from BI
Publisher to within the database

– A Java utility was written to base 64 encode a PDF file

– The SQL in the Oracle provided data template was moved into PLSQL code and
“encased” in XML generating functions

– The XSL transform used to generate the XML was not used in BI Publisher, but was
instead fired from within the database code

– A simple eText RTF formatting template was used in the bursting control file to generate
the XML.

Technique #5 – Bursting to XML

BI Publisher

start

Invoice Print

Program

(spawned – new

eInvoice batch)

eInvoice Data for

all Invoices (XML)
Bursting Control eText Format

eInvoices (XML)

end

eInvoice Generation

Program

Base 64

encoding

Oracle

Receivables

PDF Invoices

New Solution incorporating

base 64 PDF invoice

encoding

Technique #5 – Bursting to XML

• XML generation moved to the PLSQL code

Technique #5 – Bursting to XML

• All XML components assembled into one raw XML field

Technique #5 – Bursting to XML

• Assembled XML stored in a temporary table

Technique #5 – Bursting to XML

• XML transformed via SQL in the Data Template

Technique #5 – Bursting to XML

• eText Format to produce XML

Technique #5 – Bursting to XML

• Bursting Control to generate XML through eText format

Technique #5 – Bursting to XML

• The new solution built was greatly improved over the previous

– Only 1 process needed to generate all XML files, instead of one per invoice document

– Run-time was reduced from three hours for a typical batch to 5 minutes

• The Design was scalable for future enhancements. Recently, the business

required that a second attachment be added to the generated XML file for each

invoice.

Technique #5 – Bursting to XML

• DON’T

– Be limited by BI Publisher’s inability to burst to XML

• DO

– Utilize native Oracle database XML functions to aggregate and build XML

– Use BI Publisher bursting to dynamically generate XML

Session ID:

Remember to complete your evaluation for this session within the app!

11607

Joe Tseng
jtseng@o2works.com

